Thursday, February 2, 2023
No menu items!
HomeUSA NEWSSCIENCE- USAThe Prox1 enhancer suppresses haematopoiesis within the lymphatic vasculature

The Prox1 enhancer suppresses haematopoiesis within the lymphatic vasculature

Date:

Related stories

  • De Laat, W. & Duboule, D. Topology Mammalian developmental enhancers, and their regulatory landscapes. Nature 502, 499–506 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Spitz, F. Gene Regulating at a distance: Remote enhancers and 3D regulatory ensembles. Semin. Cell Dev. Biol. 57, 57–67 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Rickels, R. & Shilatifard, A. Enhancer Logic and mechanics in disease and development Trends Cell Biol. 28, 608–630 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Maurano, M. T. et al. Systematic Common disease-associated variation can be found in regulatory DNA. Science 337, 1190–1195 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oliver, G. et al. Prox1, a homeobox gene that is related to prospero, was expressed in mouse development. Mech. Dev. 44, 3–16 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Wigle, J. T., Chowdhury, K., Gruss, P. & OliverG. Prox1 is essential for the elongation of mouse lens-fibres Nat. Genet. 21, 318–322 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Dyer, M. A., Livesey, F. J., Cepko, C. L. & OliverG. Prox1 functions controls horizontal cell genesis and progenitor cell proliferation in mammalian retina. Nat. Genet. 34, 53–58 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Sosa-Pineda, B., Wigle, J. T. & Oliver, G. Hepatocyte migration during liver development requires Prox1. Nat. Genet. 25, 254–255 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. The production of insulin is controlled by Prox1 activity. “secondary transition” The pancreatic endocrine glands. Dev. Biol. 286, 182–194 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Risebro, C. A. et al. Prox1 is responsible for maintaining muscle structure and growth during the development of the heart. Development 136, 495–505 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wigle, J. T. & OliverG. Prox1 function is necessary for the development and maintenance of the murine lymphatic network. Cell 98, 769–778 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Harvey, N. L. et al. Lymphatic Adult-onset obesity is caused by vascular defects that are promoted by Prox1 haploinsufficiency. Nat. Genet. 37, 1072–1081 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, N. C. et al. Lymphatic Endothelial cell identity can be reversed and maintained by Prox1 activity. Genes Dev. 22, 3282–3291 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Francois, M. et al. Sox18 stimulates the development of lymphatic vessels in mice. Nature 456, 643–647 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Srinivasan, R. S. et al. The nuclear hormone receptor Coup-TFII is necessary for the initiation or early maintenance of Prox1 gene expression in lymphatic endothelial tissues. Genes Dev. 24, 696–707 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kazenwadel, J. et al. LossGATA2 plays a crucial role in lymphatic vasculature. Blood 119, 1283–1291 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ostergaard, P. et al. Mutations GATA2 causes primary lymphedema in association with a predisposition for acute myeloidleukemia (Emberger syndrome). Nat. Genet. 43, 929–931 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kazenwadel, J. et al. GATA2 is needed for the development and maintenance of lymphatic vessel valves. J. Clin. Invest. 125, 2979–2994 (2015).

    Article 

    Google Scholar
     

  • Petrova, T. V. et al. Defective Lymphatic vascular dysfunction in lymphedema dystichiasis can be caused by malfunctioning valves or abnormal mural cell recruiting. Nat. Med. 10, 974–981 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Norrmen, C. et al. FOXC2 and NFATc1 work together to control the formation and maturation lymphatic collecting vessels. J. Cell Biol. 185, 439–457 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Srinivasan, R. S. & OliverG. Prox1 dosage regulates the number of lymphatic endothelial cells progenitors as well as the formation of lymphovenous valves. Genes Dev. 25, 2187–2197 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kothary, R. et al. Inducible Expression of a hybrid gene hsp68-lacZ in transgenic mice Development 105, 707–714 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Shin, M. et al. Valves These are a preserved feature of the Zebrafish lymphatic system. Dev. Cell 51, 374–386.e5 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sweet, D. T. et al. Lymph In vivo, flow controls maturation of collecting lymphatic vessels J. Clin. Invest. 125, 2995–3007 (2015).

    Article 

    Google Scholar
     

  • Sabin, F. R. Preliminary Note the differentiation of angioblasts, the process by which they produce red blood-cells, blood-plasma, and blood-vessels. This is as shown in the live chick. 1917. J. Hematother. Stem Cell Res. 11, 5–7 (2002).

    Article 

    Google Scholar
     

  • De Bruijn, M. F., Speck, N. A., Peeters, M. C. & Dzierzak, E. Definitive Hematopoietic stem cells develop first in the major arterial regions within the mouse embryo. EMBO J. 19, 2465–2474 (2000).

    Article 

    Google Scholar
     

  • Nakano, H. et al. Haemogenic Endocardium plays a role in transient definitive haematopoiesis. Nat. Commun. 4, 1564 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikkola, H. K. The Placenta is an ideal place for hematopoietic stem cell production. Dev. Cell 8, 365–375 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Nakano, T., Kodama, H. & Honjo, T. Generation Culture of embryonic stem cell-derived lymphohematopoietic tissues. Science 265, 1098–1101 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McGrath, K. E. et al. Distinct Sources of hematopoietic stem cells are found before HSCs. They provide functional blood cells to the mammalian embryo. Cell Rep. 11, 1892–1904 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gao, L. et al. RUNX1 – The endothelial origin blood. Exp. Hematol. 68, 2–9 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wigle, J. T. et al. An Prox1 plays a crucial role in the induction lymphatic endothelial phenotype. EMBO J. 21, 1505–1513 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Sabine, A. et al. MechanotransductionFOXC2, PROX1, FOXC2 and connexin37 are all controlled together during lymphatic-valve formation. Dev. Cell 22, 430–445 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hope, K. J. et al. An RNAi screens identified Msi2 & Prox1 having different roles in regulation of hematopoietic stem cells activity. Cell Stem Cell 7, 101–113 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Okuda, K. S. et al. Lyve1 expression in Zebrafish reveals new lymphatic vessels and mechanisms for developing them. Development 139, 2381–2391 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dunworth W. P. et al. Bone Signaling by morphogenetic proteins 2 negatively influences lymphatic development in embryos of vertebrates. Circ. Res. 114, 56–66 (2014).

    Article 
    CAS 

    Google Scholar
     

  • van Impel, A. et al. Divergence of mouse and zebrafish lymphatic cell fate specification routes. Development 141, 1228–1238 (2014).

    Article 

    Google Scholar
     

  • Hogan, B. M. et al. Ccbe1 must be present in order to stimulate venous growth and embryonic lymphangiogenesis. Nat. Genet. 41, 396–398 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Dubchak, I. et al. Active Three-way species comparisons reveal conservation of noncoding sequences. Genome Res. 10, 1304–1306 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA : Computing tools for Comparative Genomics Nucleic Acids Res. 32, W273–W279 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Brudno, M. et al. LAGAN and multiLAGAN: powerful tools for large scale multiple alignment of genomic genome DNA. Genome Res. 13, 721–731 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Bessa, J. et al. Zebrafish Enhancer detection vector (ZED): A new tool for transgenesis and functional analysis of cis regulatory regions in Zebrafish. Dev. Dyn. 238, 2409–2417 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Furumoto, T. A. et al. NotochordDuring vertebral column formation, the PAX1 and MFH1 co-express in a manner that maintains the proliferation of sclerotomes cells. Dev. Biol. 210, 15–29 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kazenwadel, J., Michael, M. Z. & HarveyN. L. Prox1 expression in endothelial cell is negatively regulated through miR-181. Blood 116, 2395–2401 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Naumova, N., Smith, E. M., Zhan, Y. & Dekker, J. Analysis Use chromosome Conformation Capture to capture long-range interactions with chromatin. Methods 58, 192–203 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV), high-performance genomics data visualization & exploration Brief Bioinform. 14, 178–192 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: Fast processing of NGS alignment format. Bioinformatics 31, 2032–2034 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python Framework for working with high-throughput sequence data Bioinformatics 31, 166–169 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & SmythG. K. edgeR, a Bioconductor Package for differential analysis of digital gene data. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis is a knowledge-based method for understanding genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Irizarry, R. A. et al. ExplorationData at the probe level of high density OligonucleotideArray probes can be normalized, summarized, and summarised. Biostatistics 4, 249–264 (2003).

    Article 
    MATH 

    Google Scholar
     

  • Source Link

    [td_block_social_counter custom_title="Follow us on Social" facebook="100070952415641" twitter="huntdailynews1" header_color="#81d742" manual_count_facebook="400"]

    Latest stories

    Republic Day OfferGer Shampoo + Hair Oil @Rs.1/-

    Don’t miss the chance to Ger Shampoo + Hair Oil @Rs.1/-