Wednesday, February 1, 2023
No menu items!
HomeUSA NEWSSCIENCE- USADown-Conversion of a single photon for a probe of many body localization

Down-Conversion of a single photon for a probe of many body localization

Date:

Related stories

  • Klyshko, D. Scattering Light in a medium with nonlinear, polarizability Sov. Phys. JETP 28, 522–526 (1969).

    ADS 

    Google Scholar
     

  • Altshuler, B. L., Gefen, Y., Kamenev, A. & Levitov, L. S. Quasiparticle lifetime in a finite system: a nonperturbative approach. Phys. Rev. Lett. 78, 2803–2806 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schreiber, M. et al. Observation Many-body localization of interinteracting fermions in a quasirandom optical layer. Science 349, 842–845 (2015).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Smith, J. et al. Many-body localization using a quantum simulator with programmable random disorders Nat. Phys. 12, 907–911 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Roushan, P. et al. Spectroscopic Signatures of localization in superconducting qubits with interacting photons Science 358, 1175–1179 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lukin, A. et al. Probing entanglement in a many-body–localized system. Science 364, 256–260 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bluvstein, D. et al. Controlling Quantum many-body dynamics is driven Rydberg Atom arrays. Science 371, 1355–1359 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Morong, W. et al. Observation This is Stark Many-body localization without disorder Nature 599, 393–398 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, Q. et al. Observation Energy-resolved Many-Body Localization Nat. Phys. 17, 234–239 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anderson, P. W. Absence Certain random lattices may allow for diffusion. Phys. Rev. 109, 1492–1505 (1958).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gornyi, I. V., Mirlin, A. D. & Polyakov, D. G. Interacting Disordered wires can cause electrons to be distorted: Anderson Low-cost localizationt transport. Phys. Rev. Lett. 95, 206603 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Basko, D., Aleiner, I. & Altshuler, B. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Possible Experimental manifestations of many-body localization Phys. Rev. B 76, 052203 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Oganesyan, V. & Huse, D. A. Localization Interacting fermions at high temperatures Phys. Rev. B 75, 155111 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Serbyn, M., Papić, Z. & Abanin, D. A. Local Conservation laws and the structure in many-body localized States Phys. Rev. Lett. 111, 127201 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology Fully many-body-localized systems Phys. Rev. B 90, 174202 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Nandkishore, R. & Huse, D. A. ManyQuantum statistical mechanics: -body thermalization and localization Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization and thermalization. Rev. Mod. Phys. 91, 021001 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Choi, J.-Y. et. Exploring The two-dimensional transition to many-body location Science 352, 1547–1552 (2016).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Xu, K. et al. Emulating Superconducting quantum processor allows for many-body localization. Phys. Rev. Lett. 120, 050507 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mirlin, A. D. Statistics The energy levels and eigenfunctions within disordered system. Phys. Rep. 326, 259–382 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Serbyn, M. & Moore, J. E. Spectral Statistics across the many body localization transition. Phys. Rev. B 93, 041424 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Nandkishore, R., Gopalakrishnan, S. & Huse, D. A. Spectral A bath can weakly connect to features of a multiple-body-localized system. Phys. Rev. B 90, 064203 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Johri, S., Nandkishore, R. & Bhatt, R. N. Many-body localization within imperfectly isolated quantum systems Phys. Rev. Lett. 114, 117401 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Folk, J., Marcus, C. & Harris, J.Jr Decoherence In quantum dots that are almost isolated Phys. Rev. Lett. 87, 206802 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: one CooperFree of charge offsets for -pair circuit Science 326, 113–116 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meiser, D. & Meystre, P. Superstrong Cavity quantum electrodynamics coupling regime. Phys. Rev. A 74, 065801 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Sundaresan, N. M. et al. Beyond A multimode cavity with strong coupling Phys. Rev. X 5, 021035 (2015).


    Google Scholar
     

  • Martínez, J. P. et al. A tunable Josephson Platform for exploring many-body quantum optics using circuit-QED. npj Quantum Inf. 5, 19 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kuzmin, R., Mehta, N., Grabon, N., Mencia, R. & Manucharyan, V. Superstrong coupling in circuit quantum electrodynamics. npj Quantum Inf. 5, 20 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Mehta, N., Ciuti, C., Kuzmin, R. & Manucharyan, V. E. Theory Strong down-conversion in multimode cavity and circuit QED Preprint At https://arxiv.org/abs/2210.14681 (2022).

  • Kuzmin, R. et al. Quantum electrodynamics of a superconductor–insulator phase transition. Nat. Phys. 15, 930–934 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nigg, S. E. et al. Black-box superconducting circuit quantization. Phys. Rev. Lett. 108, 240502 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kuzmin, R. et al. Inelastic scattering of a photon by a quantum phase slip. Phys. Rev. Lett. 126, 197701 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kuzmin, R., Mehta, N., Grabon, N. & Manucharyan, V. E. Tuning the inductance of Josephson junction arrays without SQUIDs. Preprint at https://arxiv.org/abs/2210.12119 (2022).

  • Naik, R. et al. Random access quantum information processors using multimode circuit quantum electrodynamics. Nat. Commun. 8, 1904 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link

    [td_block_social_counter custom_title="Follow us on Social" facebook="100070952415641" twitter="huntdailynews1" header_color="#81d742" manual_count_facebook="400"]

    Latest stories

    Republic Day OfferGer Shampoo + Hair Oil @Rs.1/-

    Don’t miss the chance to Ger Shampoo + Hair Oil @Rs.1/-